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Abstract

Hydroelastic effects are simulated by coupling a hydrodynamic Wagner model to a linear model of
elasticity for thin shells. Applications are done for a cone falling on a flat-free surface of an incompressible
liquid. Both hydrodynamic and structural models are linearized on the basis of a flat disk approximation.
This is justified when the deadrise angle is small. In the hydrodynamic Wagner model, the main task is to
evaluate the time-varying expansion of the wetted surface. The coupling with the linear model of elasticity is
achieved via a modal-based method. This means that the hydrodynamic variables must project onto the
family of eigenfunctions; this is the second main difficulty of the present problem. The coupled problem is
solved mainly analytically.
Special attention is paid to the energy conservation law. In particular, it is shown that kinetic energy

evacuated in the jet plays as significant a role in the distribution of energy as the kinetic energy transmitted
to the fluid or the kinetic and potential energies of the elastic shell.
The importance of elasticity is discussed by comparing the rigid and elastic behaviours for free drop tests.

A parametric study shows the influence of each parameter: thickness, deadrise angle and drop height.
Comparisons with available experimental pressure data show a reasonable agreement. On the basis of this
work, lines of future research are outlined.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In naval architecture and in the offshore industry, there are many situations where
hydroelasticity effects due to slamming are of great interest. For example high-speed vessels,
floating production storage offloading (FPSO) structures and cruisers may strongly suffer from
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these effects. This depends on their environmental sea states (not necessarily rough) and their local
stern or bow configurations.
Today, designers still cannot determine using a single model all the dimensioning loads (due to

wave, current, water impact, interactions with other structures, etc.) and the resulting sea-keeping
behaviour of ships or offshore structures. It is not unrealistic to think that such solvers will exist in
the long term. On the one hand, sea-keeping solvers are now used for industrial purposes in a
standard way. On the other hand, computational fluid dynamics solvers (for Navier–Stokes or
Euler equations) are coupled through adapted algorithms to capture the free surface motion
(volume of fluid, level-set, etc.). These approaches are getting more and more efficient. But to the
author’s knowledge they have not yet proved their ability to reproduce slamming effects with
sufficient numerical stability. In particular, the pressure calculation is far from being numerically
stable enough. The promising method smooth particle hydrodynamics, which is very stable in
essence (see Ref. [1]), makes it possible to capture strong fluid/structure interactions. However this
technique also suffers from numerical difficulties when accounting for the impermeability
conditions.
Alternative approaches consist of isolating in space (locations on the hull) and time

(occurrence) the slamming effects and then models can be used with a known domain of
application. This paper aims to enlarge the domain of application of this approach. After
identifying the initial contact point and the kinematics of a falling elastic shell, the present
technique combines a structural model within the linear elasticity theory with a rather simple
hydrodynamic pressure model. Among the existing hydrodynamic slamming models, the Wagner
technique [2] is undoubtedly the simplest one. Basically, the continuously and rapidly expanding
wet surface of the body is calculated while the body penetrates the liquid. The fluid is perfect and
incompressible and the flow is irrotational. The hydrodynamic boundary value problem (BVP) is
posed within the potential theory. In addition, gravity effects and surface tension effects are
neglected. The reason why acoustic effects are also discarded will be discussed later. The fluid
which is ejected in the jet is not modelled but the velocity and flux of the fluid in the jet can be
approximated. This yields not only information on the kinetic energy which is evacuated in the jet,
but also some arguments about the energy conservation law.
For two-dimensional and axisymmetric rigid bodies, linearized or generalized Wagner models

are now well solved (see Refs. [3–6]). But slamming effects are three dimensional in nature and
common strip theory is not reliable enough. Therefore the three-dimensional linearized Wagner
problem has been developed further (see Refs. [7–9]). For arbitrary three-dimensional shapes, the
problem is still open but for an elliptic paraboloid there exist exact solutions by solving the inverse
Wagner problem (see Ref. [10]). When the body is elastic only simple shells can be considered.
Wilkinson et al. [11] formulated the pressure distribution within a Karman technique, i.e. without
accounting for the wetting correction. In Ref. [12] hydroelastic effects on the wetdeck of a
catamaran are analyzed by coupling a linear elastic model (Euler or Timoshenko beam) to a
linearized Wagner model through a modal decomposition of the variables (deflection and
hydrodynamic pressure). Korobkin and Khabakhpasheva [13] gave more insights into this
coupled hydroelastic problem. In particular they proposed a simple method of solution. On the
basis of their work, the case of a cone is investigated in this paper.
The model is developed on the basis of a drastic assumption: the deadrise angle (the relative

angle between the body surface and the deformed free surface) is small. This means that the BVP
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can be posed onto a horizontal plane. This is known as the flat disk approximation. This
assumption is crucial in order to provide (semi-)analytical solutions. If not, the only alternative
approach is a numerical approach formulated for example through an integral equation for the
potentials of the flow (see for example the recent work by Battistin and Iafrati [14]).
In this paper, the first section is devoted to the coupled hydroelastic problem. Special attention is

paid to the energy conservation law. As for the rigid case, it is proved (see Refs. [15,16] among
others) that the energy evacuated in the jet plays as significant a role in the distribution of energy as
the kinetic energy transmitted to the fluid or the kinetic and potential energies of the elastic shell.
Then the obtained results are discussed. The pressure distribution acting on the cone is

compared to available experimental data by Donguy [17]. Phenomena such as air cushions or
entrapped air pocket are described. In conclusion, some perspectives for future research are
outlined in order to improve the model and also to know better its domain of application.

2. Hydroelastic problems within the Wagner theory

The Wagner theory [2] was initially developed to calculate the pressure loads acting on floaters
of seaplanes when landing. These floaters are generally elongated and therefore the corresponding
two-dimensional wedge section has been studied in detail. The extension to a three-dimensional
configuration is straightforward. However the problem gets more tricky. It is illustrated in Fig. 1.
In the upper part the actual shape is shown as it penetrates, at time t; an initially flat free surface
of liquid. The locally deformed free surface is drawn. The jet is not reproduced. For the sake of
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Fig. 1. Hydrodynamic Wagner problem: original flow domain and linearized domain following the assumption of small

deadrise angle. The body falls vertically (z direction). The computational domain is bounded with the horizontal plane.

This plane is decomposed into FSðtÞ; the free surface, and DðtÞ; the wet surface of the body. These two surfaces are
separated with GðtÞ: the contact line. The jet is not reproduced in the figure.
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visibility, the scale is stretched in the vertical direction. The picture illustrates how the problem is
linearized. The linearization of the boundary conditions implies that the surfaces are projected
onto a horizontal plane which becomes the upper boundary of the computational fluid domain.
Two parts are identified: the free surface FSðtÞ; which extends to infinity and the wet body surface
DðtÞ: Both FSðtÞ; and DðtÞ depend on time t: They are separated by the so-called contact line GðtÞ:
The time evolution of GðtÞ is such that the closed curves Gðt1Þ and Gðt2Þ have no intersection points
as long as t1at2: The velocity of the expanding surface DðtÞ is the most important parameter in
the present problem. For a symmetric two-dimensional section or an axisymmetric body (cone,
sphere, etc.), one has to calculate only a scalar quantity; this is called the wetting correction.
The linearization is based on the assumption that the deadrise angle is small. The value 4� is

commonly accepted as the lower limit. Below this value, ventilation effects may occur leading to a
non-homogeneous fluid. Above 20�; comparisons with experimental data show that this model
fails. Zhao and Faltinsen [4] hence formulated the problem by imposing the boundary condition
on the exact wet surface. However, in that case, the method of solution is fully numerical unless
simple shapes are considered through geometric transformations (see Refs. [18–20], among
others). Here attention is focused on the methods of solution usable at preliminary design stages.
Hence analytical methods are preferred since they usually require small computer resources.
When the body is elastic, a model of elasticity must be introduced. The decoupled problem

consists in solving separately the hydrodynamic problem with a rigid body on the one hand and a
structural problem on the other. This approach provides results but it is known that information
is lost (see Ref. [21]). It is preferred here to solve the fully coupled hydroelastic problems: the
Wagner problem on the one hand and a linear model of elasticity on the other.
The coupling of the hydrodynamic and elastic problems is not straightforward. This is due to

the nature of the hydrodynamic excitation, i.e. the pressure. As a matter of fact, the pressure does
not act on the whole surface of the shell but just acts on its wet part. Within the Wagner approach,
it is known that the distribution of pressure has a strong peak close to the contact line and
furthermore this line evolves very rapidly in time.
These problems are described in the following developments. The elastic model is first detailed

on the basis of a modal decomposition. The hydrodynamic problem is then solved providing a
way to determine the velocity at which the wet surface expands. The coupling of the two models
follows from the decomposition of the velocity potential and/or displacement potential on a
family of eigenfunctions. Finally special attention is paid to the energy conservation law.

2.1. Elastic model

Among the existing elastic models, the linear model of the Euler type is the simplest one to
implement. For the present thin conical shell the surface of the cone is linearized. The linearization
follows from the assumption that the deadrise angle b is small. This approximation is consistent
with the hydrodynamic problem. However it can be criticized from the structural point of view.
More sophisticated models can be used which can handle more accurately the actual shape of the
cone. At least the curvature of shallow spherical shells can be accounted for by using Marguerre’s
formulation [22]. For such shells with clamped edge conditions, applications can be found in
Soliman and Gon@alves [23]. In their approach the governing partial differential equations are
formulated for the vertical displacement and the stress function. In Wan’s theory [24] the
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formulation for conical shells is also available. The coupling of these equations to the present
hydrodynamic Wagner model could be considered in future works.
Here within the retained assumptions, the deflection is calculated with respect to the horizontal

plane as sketched in Fig. 2 where the physical and linearized domains are drawn. The deflection
wðx; y; tÞ is expressed in terms of known eigenfunctions. For a cone falling along its axis of
symmetry, the eigenmodes are those of a flat circular shell. Calling wmðx; yÞ the eigenfunctions, the
deflection can be calculated from a breakdown where space and time variations are separated:

wðx; y; tÞ ¼
XN

n

AnðtÞwnðx; yÞ: ð1Þ

AnðtÞ denotes the amplitudes of each mode shape and they only depend on time t: In the following
the variable A will denote the vector with components AnðtÞ: Only axisymmetric modes are
retained, hence the eigenmodes wnðx; yÞ reduce to a function of the radial co-ordinate r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

: These functions also depend on the boundary conditions. It is reasonable to impose a
fixed centre with an actual clamping condition in order to reproduce the strong rigidity of the cone
at its centre. Along its outer boundary r ¼ R; a clamping condition is also imposed. There are two
reasons for that: (1) the shell can respond with its axisymmetric modes only, and (2) experimental
data (see Ref. [17]) exist for a configuration close to the present one. The boundary conditions are
summed up as follows:

wðr; tÞ ¼ w;rðr; tÞ ¼ 0 at centre r ¼ 0;

wðr; tÞ ¼ w;rðr; tÞ ¼ 0 outer boundary r ¼ R:

(
ð2Þ
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Fig. 2. Physical domain and linearized computational domain following the assumption of small deadrise angle b: The
shell and its supporting body fall vertically with velocity V ðtÞ: The deflection wðx; y; tÞ depends on time t and it is

measured in the horizontal plane from the undeformed shell at the point ðx; yÞ: The cone is clamped at the tip and along
its outer edge. For axisymmetric cone the edge is defined by R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:
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The eigenmodes are calculated after solving the homogeneous partial differential equation forW ðr; tÞ:

DDDW þ rdH .W ¼ 0; D ¼
EH3

12ð1� n2Þ
; ð3Þ

where rd is the density of the shell and H is its thickness. Young’s modulus is E and the Poisson
coefficient is denoted by n: Space derivatives appear in the double Laplacian operator DD and double
dots denote the second time derivative. Solutions are sought as harmonic functions in time:

W ðr; tÞ ¼ W ðrÞ sinot; ð4Þ

leading to the space differential equation for W ðrÞ;

DDDW � o2rdHW ¼ 0; ð5Þ

where the circular frequency o is then introduced with the associated number k so that

ðk=RÞ4 ¼
rdHo2

D
: ð6Þ

It is known that the elementary solutions of Eq. (5) are expressed as a linear combination of the zeroth
order Bessel and modified Bessel functions since only axisymmetric modes can respond:

W ðrÞ ¼ AJ0
kr

R

� �
þ BI0

kr

R

� �
þ CY0

kr

R

� �
þ DK0

kr

R

� �
; ð7Þ

where one of the constants ðA;B;C;DÞ can be arbitrarily chosen. A singularity at the centre r ¼ 0
occurs in the boundary conditions (2). It is removed by imposing D ¼ 2

p C in Eq. (7). The clamping
condition at r ¼ 0 yields A þ B ¼ 0 and the remaining conditions on the edge provide the condition

JðkÞ ¼
ðJ0ðkÞ � I0ðkÞÞ
ðJ1ðkÞ þ I1ðkÞÞ

�
Y0ðkÞ þ 2

pK0ðkÞ
� �
Y1ðkÞ þ 2

pK1ðkÞ
� � ¼ 0; ð8Þ

whose zeroes define an infinite set of non-dimensional numbers ðkmÞmX1: The shape function W ðrÞ
must hence be numbered and the resulting family of eigenfunctions reduces to

wmðrÞ ¼ Cm J0
kmr

R

� �
� I0

kmr

R

� �	 

� Y0

kmr

R

� �
þ
2

p
K0

kmr

R

� �	 

; ð9Þ

with the coefficients

Cm ¼
Y0ðkmÞ þ 2

pK0ðkmÞ
� �
ðJ0ðkmÞ � I0ðkmÞÞ

¼
Y1ðkmÞ þ 2

pK1ðkmÞ
� �
ðJ1ðkmÞ þ I1ðkmÞÞ

: ð10Þ

It should be noted that the second derivative of wmðrÞ is singular at the origin. Consequently the
strains and stresses are also asymptotically singular at the origin. By using the boundary conditions
(2), it can be shown that the singularity behaves as log r: The present idealized configuration must be
considered as a limiting case of the more physical configuration where the elastic disk is clamped along
a small disk of finite radius, denoted e and such that e=R-0 asymptotically. For finite radius e all
quantities are also finite. It can be checked that the eigennumbers k (which follow from Eq. (8) and
which are calculated below) are the limit of kðeÞ when e=R-0: This is discussed in Ref. [25] or in Ref.
[26]. It is concluded that the strains and stresses can be very high in the vicinity of the tip but they are
concentrated at a single point of zero radius. The resulting global stress is however finite at the tip
since it behaves as e log e asymptotically.
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It should be noted that the eigennumbers kn can be approximated for large n; however, the
numerical computation provides them with a quite sufficient degree of accuracy. The solutions
ðwnÞn¼1;N compose a complete set of orthogonal functions for the inner productZ R

0

wnðrÞwmðrÞr dr ¼ dnmUm ¼
Um if m ¼ n;

0 if man:

(
ð11Þ

2.2. Hydrodynamic Wagner model

The present application is a simplified case of the theory exposed in Korobkin and Scolan [27].
Numerical calculations appear in Appendix A.
The boundary value problem (BVP) is solved in time for tX0 where the origin t ¼ 0

corresponds to the instant at which the body starts its penetration into the liquid. The body has
either a constant velocity of penetration or it may fall freely in vacuum over an initial height hc:
This yields the velocity at the initial contact instant to be Vini ¼

ffiffiffiffiffiffiffiffiffi
2ghc

p
: Within potential flow

theory, the BVP is formulated in terms of the displacement potential f; this is the time integral of
the velocity potential j ¼ f;t: It is calculated in the whole fluid domain OðtÞ limited on its upper
side with the free surface FSðtÞ and the wet part of the body DðtÞ: This BVP is mixed. The
Bernoulli equation expressed on FSðtÞ reduces it to a homogeneous Dirichlet condition for j and
f; by neglecting both the gravity and the quadratic term ð=jÞ2: This means that all streamlines
arrive at the free surface at a right angle; this is due to the linearization of the free surface on its
position at rest. As a consequence the fluid at the free surface may have only a vertical motion and
the flow can be extended in the upper half plane by symmetry; this is the so-called ‘‘flat disk
approximation’’. On DðtÞ a Neumann condition results from the impermeability of the body.
Fig. 3 shows the physical and linearized domains and the corresponding notations. The resulting
BVP now reads

Df ¼ 0 *zo0;
f ¼ 0 on r > 1 and *z ¼ 0;

f;*z ¼ aðtÞ½�hðtÞ þ f ðaðtÞrÞ þ wðaðtÞr; tÞ� on ro1 and *z ¼ 0;

f-0 ðr2 þ *z2Þ-N;

8>>>><
>>>>:

ð12Þ
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Fig. 3. Flat disk approximation within Wagner theory.
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where the vertical and radial co-ordinates are made non-dimensional with aðtÞ; *z ¼ z=aðtÞ; r ¼
r=aðtÞ: At time t the body penetrates the liquid with a draft hðtÞ: The equation z ¼ f ðrÞ defines a
generatrix of the cone measured from the apex, such that f ðrÞ ¼ r tan b: The usual way to solve
this problem is to perform a Hankel transformation of the variable (see Ref. [28]). The
displacement potential is sought in the form

fðr; *z; tÞ ¼
Z

N

0

Gðl; tÞel*zJ0ðlrÞ dl; ð13Þ

and must verify the two boundary conditions. This givesZ
N

0

Gðl; tÞJ0ðlrÞ dl ¼ 0 for r > 1; ð14Þ

and Z
N

0

lGðl; tÞJ0ðlrÞ dl ¼ aðtÞð�hðtÞ þ f ðaðtÞrÞ þ wðaðtÞr; tÞÞ ð15Þ

¼ kðaðtÞr; tÞ for ro1: ð16Þ

After some algebra the function Gðl; tÞ appears as a particular case of Titchmarsh’s solutions
(see Ref. [29, p. 86]):

Gðl; tÞ ¼

ffiffiffiffiffi
2l
p

r Z 1

0

u
3
2J1=2ðulÞ du

Z p
2

0

sin akðaðtÞu sin a; tÞ da; ð17Þ

where k (see Eq. (16)) denotes the right side of the Neumann condition on the wetted surface ro1:
The function Gðl; tÞ is then introduced in Eq. (13) and the integration in l is performed by using
equation AS1 11.4.41 to give

fðr; 0; tÞ ¼
Z 1=r

1

wðrn; tÞ dnffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p ; ð0oro1Þ; ð18Þ

with

wðm; tÞ ¼
2

p

Z m

0

skðaðtÞs; tÞ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p : ð19Þ

The function wðm; tÞ can be further developed for the cone as

wðm; tÞ ¼
2a

p
�hmþ

p
4

am2 tan bþ m
XN
n¼1

AnðtÞ
Z 1

0

xwnðamxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
" #

: ð20Þ
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The displacement potential then reads2;

fðr; 0; tÞ ¼ �
2ah

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
þ

a2 tan b
4

r2 Argch
1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p	 


þ
2ar
p

XN
n¼1

AnðtÞ
Z 1=r

1

n dnffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p Z 1

0

xwnðaxnrÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p : ð21Þ

The radial gradient of f represents the radial displacement of the fluid. It is singular at r ¼ 1 but
it must be continuous along the intersection line. This condition is satisfied if and only if
f;rð1; 0; tÞ ¼ 0: The so-called Wagner condition thus reads

Z p
2

0

sin akðaðtÞ sin a; tÞ da ¼ 0; ð22Þ

which is used to calculate aðtÞ: For the cone, the Wagner condition is turned into

AQ ¼ hðtÞ � a
p
4
tan b; ð23Þ

where the vector Q has components

QnðaÞ ¼
Z 1

0

xwnðaxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼
Z p=2

0

sin ywnðaðtÞ sin yÞ dy: ð24Þ

The numerical calculation of the coefficients QnðaÞ is detailed in Section A.1. The displacement
potential can be further developed but it is not used any longer. From expression (21) one
calculates the velocity potential by using j ¼ f;t;

jðr; aÞ ¼ �
2V ðtÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
þ ’AU ¼ j0ðr; a; tÞ þ jeðr; a; tÞ; ð25Þ

where the first component ðj0Þ corresponds to the velocity potential of the rigid disk with radius
aðtÞ: The second term ðjeÞ is the modal decomposition of the potentials with components
(see Section A.4)

Fnðr; aÞ ¼
2r

p

Z a=r

1

n dnffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p Z 1

0

xwnðrxnÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p : ð26Þ

The free surface elevation is obtained from the vertical gradient of the displacement potential
calculated on the free surface z ¼ 0;

Zðr; tÞ ¼ f;zðr; z; tÞjz¼0 ¼
1

a

Z
N

0

lGðl; tÞJ0ðlrÞ dl; ð27Þ
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where G is obtained from Eq. (17). The l-integration is performed by using equation GR3 6.575.1
to give

Zðr; tÞ ¼ �
1

a

Z 1

0

nwðn; tÞ dn

ðr2 � n2Þ3=2
; ðr > 1Þ; ð28Þ

where w of Eq. (20) is introduced in the integrand of Eq. (28), this yields the following result:

Zðr; tÞ ¼
2hðtÞ
p
Y2ðrÞ �

a tan b
2

Y3ðrÞ �
2

p
AE; ð29Þ

with the tabulated formalæ

YnðrÞ ¼
Z 1

0

nn dn

ðr2 � n2Þ3=2
; Enðr; aÞ ¼

Z arcsinð1=rÞ

0

tan2 aQnðar sin aÞ da: ð30Þ

Since the partial differential equation (3) is of second order in time, one should note that the
pressure is not explicitly required in the coupled problem but its time integral, that is to say the
velocity potential. As a consequence the modal formulation of the pressure is avoided. The
pressure distribution is hence calculated a posteriori and follows from Bernoulli’s equation;

p ¼ �rf j;t ¼ �rf ð ’j0ðr; a; tÞ þ .AU þ ’A ’UÞ; ð31Þ

where rf is the density of the fluid. This expression is singular at r ¼ aðtÞ i.e. at the spray root. The
singular part of the pressure is isolated having in view the coupling with the local solution of
Wagner [2].

Psing ¼
2

p
rf a ’a

V � ’AQffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p : ð32Þ

Fig. 4 illustrates the fluid motion in the vicinity of the contact line r ¼ aðtÞ: The local solution
calculated by Wagner [2] in the spray root is two dimensional but it is proved (see Refs. [32,33])
that it can be matched to the present axisymmetric solution. The flow is described in a co-ordinate
system ðO; x; ZÞ attached to the spray root as sketched in Fig. 5. The asymptotic expressions of the
velocity potential and the pressure when x-0 are written as follows:

jrootE� 4U

ffiffiffiffiffiffiffi
djxj
p

r
; prootE2rf U2

ffiffiffiffiffiffiffiffi
d
pjxj

s
: ð33Þ

They are matched to the solution (32) given above, hence yielding U ; the velocity of the fluid in
the jet and d the thickness of the jet;

U ¼ ’a; d ¼
a

2p ’a2
ðV �QðaÞ ’AÞ2: ð34Þ

The obtained distribution of pressure predicts a maximum at the stagnation point (at the origin of
the co-ordinate system attached to the spray root)

Pmax ¼
1

2
rf ’a

2; ð35Þ
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consistently with the rigid case. A uniformly valid distribution of pressure is obtained up to r ¼ aþ

(i.e. within the spray root) from the composite formulation by Zhao and Faltinsen [4]

pðr; tÞ ¼ �rf ’j0 � rf

XN
n¼1

d

dt
’AU þ Proot �

1

p
rf ’aðV �Q ’AÞ

ffiffiffiffiffiffiffiffiffiffiffi
2a

a � r

r
; ð36Þ

where the last term cancels the singularity at r ¼ a: This is the asymptotic expression of Psing (see
Eq. (32)) along the contact line, i.e., when r-a: This formulation yields a uniformly valid
distribution of pressure, in particular it catches the maximum of pressure through the component
Proot which reads

Proot ¼ 2r ’a2
jtj1=2

ð1þ jtj1=2Þ2
; with r � a ¼

d
p
ð�log jtj � 4jtj1=2 � jtj þ 5Þ; r > a: ð37Þ
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Consistently with Newman [34, pp. 132–134], the force follows from the integral

~FF ¼ �rf

d

dt

Z
DðtÞ

j~nn ds; ð38Þ

where the normal~nn is taken to be positive when pointing out from the fluid volume, thus yielding
FðtÞ ¼ ~FF 
~zz: Due to the boundary condition on the free surface, integral operator and time
derivative permute to give

F ðtÞ ¼ 2p
Z aðtÞ

0

pðr; tÞr dr: ð39Þ

As a first approximation, Eq. (31) provides the pressure to integrate. After some algebra this yields

F ðtÞ ¼ rf

d

dt

4

3
a3V

� �
�
d

dt
ð ’ARðaÞÞ; ð40Þ

with the vector RðaÞ defined by its coefficients (see Section A.5)

RnðaÞ ¼ 2prf

Z a

0

Fnðr; aÞr dr ¼ 4rf

Z a

0

x2QnðxÞ dx: ð41Þ

Its time derivative of RnðaÞ is directly provided by the formula
’RnðaÞ ¼ 4rf ’aa2QmðaÞ: ð42Þ

It is worth noting that F ðtÞ appears as the time derivative of two terms. One can recognize two
components. The first component (denoted Fr) is the usual impact force for the rigid case

FrðtÞ ¼
d

dt
ðMaV Þ; with Ma ¼

4

3
rf a3; ð43Þ

where Ma is the added mass of the circular disk with radius aðtÞ: The second component takes into
account the elasticity and can be turned into

FeðtÞ ¼ � .ARðaÞ � ’MaQ ’A: ð44Þ

2.3. Solution of the coupled hydroelastic problem

The partial differential equation which governs the deflection wðr; tÞ is

DDDw þ rdHð .w � ’VÞ ¼ pðr; tÞ; ð45Þ

where the acceleration ’V can only vary in time and it corresponds to the acceleration of the body
on which the shell is clamped. As ’V is also unknown, one needs an additional equation which is
the Newton law

Mc
’V ¼ ½Mcg� � FðtÞ; ð46Þ

where the brackets mean that the acceleration due to gravity g is usually neglected. By using
Eq. (40), Newton’s law can be time integrated thus yielding an explicit expression for the velocity

VðtÞ ¼ V%ðtÞ þ
’ARðaÞ

ðMc þ MaÞ
; with V%ðtÞ ¼

Mcðgt þ ViniÞ
ðMc þ MaÞ

: ð47Þ
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The differential system now combines Eqs. (23), (45) and (47) for the unknowns ðaðtÞ;V ðtÞ;AÞ:
Following Korobkin and Khabakhpasheva [13] a new variable is introduced:

Dqðr; tÞ ¼ �rdHð ’w � V þ ViniÞ � rfj; ’q ¼ DDw: ð48Þ

It is first expressed in terms of the eigenfunctions wnðrÞ;

qðr; tÞ ¼
XN

n

qnðtÞðkn=RÞ4wnðrÞ; ð49Þ

then introduced into Eq. (45). The resulting equation is projected on each vector wm of the family
by using the inner product (11)

Zqþ gðaÞ ¼ ðk �WðaÞÞ ’A�OðV � ViniÞ; ’q ¼ A; ð50Þ

where the matrices k; WðaÞ; Z and vectors gðaÞ; O have coefficients

WmnðaÞ ¼
2a3

p

Z 1

0

z2QmðazÞQnðazÞ dz; gmðaÞ ¼
Z aðtÞ

0

j0ðr; a; tÞwmðrÞr dr; ð51Þ

lmm ¼ �H
rd

rf

Um; Zmm ¼
D

rf

km

R

� �4
Um; Om ¼ �

rdH

rf

Z R

0

rwmðrÞ dr ¼ �
rdH

rf

O%
m : ð52Þ

The calculations of gmðaÞ and WmnðaÞ are detailed in Appendix A and their variations are shown
as well. The final time differential system now reads

’A ¼ ½k �WðaÞ þ SðaÞ��1½Zqþ gðaÞ þOðV% � ViniÞ� ¼ Fða; qÞ;

’q ¼ A;

(
ð53Þ

where SðaÞ denotes a matrix which is the dyadic product of vectors O and R;

Smn ¼
OmRnðaÞ
ðMc þ MaÞ

: ð54Þ

As stated earlier, aðtÞ is a monotonic function of time t with an additional constraint that da=dt > 0:
The limiting case da=dt ¼ 0 means that the elastic falling shell undergoes large deflections, which
is far beyond the initial assumptions. Another limiting case may occur when dt=da ¼ 0 and this
case will be discussed later in Section 3.2. Between these two non-physical limits, when aðtÞ varies
‘‘normally’’, it is advantageous to change the variable a instead of t and the Wagner condition
provides the Jacobian of the transformation

dt

da
¼

p tan b=4þQ0ðaÞA

V ðtÞ �QðaÞ ’A
: ð55Þ

Then the differential system (53) is turned into

dA

da
¼
dt

da
Fða; qÞ;

dq

da
¼
dt

da
A:

8>><
>>: ð56Þ

A standard explicit Euler scheme is stable enough for the present numerical integration.
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2.4. Energy conservation law

For the rigid case the following identity relates the time rate of the different energy components:

d

dt
½KðtÞ � Ekf ðtÞ� ¼

1

2
V2ðtÞ

dMa

dt
: ð57Þ

Ekf ðtÞ is the kinetic energy of the liquid flow in the outer region of the jet, Ekf ðtÞ ¼ 1
2

MaðtÞV2ðtÞ
and KðtÞ is the work done to oppose the hydrodynamic force on the entering blunt body. As
explained in Ref. [32], during the initial stage of the water impact, the added mass of the
expanding flat disk DðtÞ increases, dMa=dt > 0: Therefore, Ekf ðtÞoKðtÞ; which is usually
considered as an indication that part of the energy is ‘‘lost’’ during the impact. It has been
proved that the flux of energy in the right-hand side of Eq. (57) is equal to the flux of kinetic
energy through the jet Ejet for some particular three-dimensional shapes as an elliptic paraboloid.
Those shapes are more general than an axisymmetric cone and their results can hence be used.
However new difficulties appear due to the elasticity of the body. But one hopes that taking into
account the energy evacuated in the jet, the energy conservation law is also satisfied. Along these
lines, one must identify additional components: the potential and kinetic energies of the elastic
body, Eps and Eks; respectively. In order to avoid the time integration, the conservation law will be
checked for the time rate of the energy components.
The simplest quantity is ’Ejet since it follows from the characteristics of the jet, that is to say its

thickness d and the velocity of the fluid in the jet ’a given by Eqs. (34). By using the previous
notations the time rate of Ejet is

’Ejet ¼ 2rf ’aa2ðV �Q ’AÞ2 ¼
1

2
’MaV2 � V ’R ’Aþ prf

’A ’W ’A: ð58Þ

The fluid kinetic energy follows from the integration of the square velocity throughout the fluid
domain ðzo0Þ

’Ekf ¼
1

2
rf

d

dt

Z
ðzo0Þ

ð~==jÞ2 dv

	 

: ð59Þ

Invoking Green’s first identity and by using the boundary conditions on the contour of the fluid
domain, ’Ekf can be turned into

’Ekf ¼
1

2
rf

d

dt

Z
DðtÞ

jj;z ds

	 

; ð60Þ

where the velocity potential j is formulated according to Eq. (25). Their corresponding vertical
gradients on the wet body surface DðtÞ are also known:

j0;z ¼ �V ðtÞ; je;z ¼ ’wðr; tÞ; on z ¼ 0: ð61Þ

As the potentials j0ðr; z; tÞ and jeðr; z; tÞ are harmonic in the fluid domain ðzo0Þ; and by
using their associated boundary condition on the free surface, the second Green’s identity
shows that Z

DðtÞ
jej0;z ds ¼

Z
DðtÞ

j0je;z ds; ð62Þ
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hence one obtains

’Ekf ¼
d

dt

1

2
MaV2 � V ’ARþ prf

’AW ’A

	 

; ð63Þ

which is turned into

’Ekf ¼
1

2
’MaV2 þ MaV ’V � ’V ’AR� V .AR� V ’A ’Rþ 2prf

.AW ’Aþ prf
’A ’W ’A: ð64Þ

On the other hand the projection of the partial differential equation (50) which governs the plate
deflection is rearranged. This equation is time differentiated and both sides are multiplied by
2p ’Am: Then a summation is performed throughout the indices m:

2pD
XN

m

km

R

� �4
UmAm

’Am þ 2pHrd

XN
m

Um
’Am

.Am � 2pHrd
’V
XN

m

O%
m

’Am

¼ � 2prf ð ’A ’W ’Aþ ’g ’Aþ ’AW .AÞ: ð65Þ

One can recognize on the left side the potential and kinetic energies of the elastic body,
namely

’Eps ¼ 2pD
XN

m

km

R

� �4
UmAm

’Am ¼ D

Z
shell

’wDDw ds ¼
d

dt

1

2
D

Z
shell

w;r2 þ
1

r
w;r

� �2
ds

" #
; ð66Þ

and

’Eks ¼ 2pHrd

XN
m

Um
’Am

.Am ¼ Hrd

Z
shell

’w .w ds ¼
d

dt

1

2
Hrd

Z
shell

’w2 ds

	 

: ð67Þ

The remaining term can be interpreted as a time rate of the coupled kinetic energy of the shell
itself

’Eksh ¼ 2pHrd
’V
XN

m

O%
m

’Am ¼ Hrd
’VpR2 ’wmean ¼ Msh

’V ’wmean; ð68Þ

whereMsh ¼ HrdpR2 is the mass of the shell and ’wmean is the mean deflection velocity of the shell.
Finally it is shown that

’Ejet þ ’Ekf þ ’Eps þ ’Eks ¼ FV þ ’Eksh; ð69Þ

which formulates the energy conservation law. The numerical accuracy of the energy con-
servation law is discussed in Ref. [35]. In particular the influence of the ratio Mc=Msh is
detailed since the present formulation is based on the assumption of a great value of
this parameter.
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3. Results and discussion

The parameters which control the phenomena are the thickness H; the initial velocity Vini

(alternatively the drop height hc) and the deadrise angle measured by T ¼ tan b: The following
scales could be introduced to make the variables non-dimensional: the length scale R; the velocity
scale Vini and the scale of the stress E: The resulting time scale is R=Vini: This quantity is much
larger than the characteristic time scale of the phenomenon itself, that is to say the interval of time
during which the cone is completely wet. As a matter of fact, on the basis of a rigid cone
calculation, the duration of the penetration until aðtÞ ¼ R is of order R= ’a ¼ OðTR=ViniÞ which is
much smaller than R=Vini according to the assumption that the deadrise angle is small. On the
other hand the elasticity may affect significantly ’a; i.e. the velocity at which the wet surface DðtÞ
expands leading to very high values of ’a: That is why an additional assumption should be
prescribed. The velocity ’a must be much smaller than the sound velocity in water co ¼ 1500 m=s
otherwise acoustic effects may occur.
With a view to comparisons with experimental data by Donguy [17] all the physical parameters

will be set to the experimental ones. The experimental set-up had the following characteristics: the
outer radius is R ¼ 0:128 m; the cone is made of aluminium with a Young’s modulus E ¼
1:2� 1011 N=m2; a Poisson coefficient n ¼ 0:3 and a density rd ¼ 2700 kg=m3: The fluid is water
with a density rf ¼ 1000 kg=m3: When the body is free to fall, the mass of the support must be
used; in the test this massMc ¼ 30 kg: The thickness ranges fromH ¼ 0:5 mm up to H ¼ 15 mm;
the latter thickness is enough to get an almost rigid shell. The deadrise angle may vary between
b ¼ 6� and b ¼ 20�: The drop height ranges from hc ¼ 0:9 m up to hc ¼ 3:5 m:
The main parameter of the present model is the velocity ’a at which the wet body surface

expands. It is calculated from the Jacobian (55). It is worth noting that the quantity ½V ðtÞ �
QðaÞ ’A� appears in the denominator of the Jacobian and hence may contribute to the time
variation of ’a: The numerical experiments show that the deflection of the shell evolves so that the
first mode only dominates after a minimum of ’a has been reached. It can also be shown that
QðaÞ ’A is always positive. These aspects are discussed in the following developments. First a
criterion must be defined to properly choose the necessary number of modes to obtain converged
results. The importance of elasticity is discussed. A parametric study shows the influence of each
parameter: thickness, deadrise angle and drop height.

3.1. Convergence with the number of modes

The variation of each mode amplitude Am with m ranging from 1 to 20 is examined. The drop
velocity is constant during the penetration into the liquid; it is set to ViniE8:3 m=s: The thickness
is H ¼ 1:5 mm and deadrise angle b ¼ 6�: The space step Da is such that R=Da ¼ 1:28� 105: The
curves in Figs. 6 and 7 show the variation of the first eight mode amplitudes ðAmÞm¼1;8: The
amplitude of the first mode A1 increases monotonically. This is consistent with experimental
observations; the free vibration stage has not started yet (see Ref. [36]). It should be noted that Am

increases significantly at the last stage of the penetration. This can be attributed to the clamping
condition of the cone at its outer edge where the structure is very rigid.
The variations of Am=A1 with the number of the mode is plotted in Fig. 8 at two stages of the

penetration: at mid immersion aðtÞ=R ¼ 1=2 and at complete immersion aðtÞ ¼ R: Knowing that
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the mode shapes in Eq. (9) all have the same scale (roughly jwmðrÞjo0:5), hence Am is a
quantitative indication of each mode contribution. Here it is shown that A8=A1o0:001 at mid
immersion. The deflection is mainly due to the first mode. However the convergence is reached
with 10 modes for the present case. To confirm this result, the variations of aðtÞ and ’aðtÞ are
examined in Fig. 9. Discernable differences only appear at the last stage of the complete
immersion in the time series of ’aðtÞ:
In order to evaluate the contribution of moderate-to-high modes, it is usual to correlate the

variations of AmðtÞ to the variations of the mode shape wmðrÞ or to the variations of the quantity
smðrÞ ¼ wm;r2 þ 1

r
wm;r which appears in the bending stress (see Ref. [37]). Fig. 10 shows the

variations of Am and wm with the parameters aðtÞ=R and r=R respectively. For the present
configuration, the deflection and the bending stress vanish at the same nodes but the stress is not
defined at the origin r ¼ 0: The bending stress is not plotted on the figure, but it is known that the
variations of wmðrÞ and smðrÞ are similar and opposite in sign. At that stage it is not possible to
correlate the maxima of AmðtÞ and wmðrÞ (or smðrÞ). On the other hand, it is shown that the
contribution of high modes is preponderant at the initial contact but their amplitudes are very
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small. Fig. 11 is a zoom on the variations of Am from the contact instant up to aðtÞ=R ¼ 0:4 of the
immersion. The amplitudes ðAmÞm¼1;5 are made non-dimensional with the amplitude of the first
mode calculated at the complete immersion A1ðaðtÞ ¼ RÞ: It should be noted that the first mode
becomes higher than the other modes after one-third of the immersion is reached. In other words,
the elastic effects are completely inhibited during the initial stage of the penetration and the
deflection mainly occurs close to the contact line during the first stage of immersion.

3.2. Different stages of the penetration

Fig. 12 details the different stages of the penetration of the cone for a free-falling cone with a
drop height hc ¼ 3:5 m: Two phases are easily identified: before and after the instant when the first
mode becomes dominant. This instant will be denoted rA1 instead of the actual corresponding
time. Below that point ’a decreases monotonically. The maximum of deflection is tracked in time:
it occurs at the position r ¼ rwmax

along the cone generatrix. The straight line r ¼ a indicates when
rwmax

is below or above the contact point. It is shown that the change occurs at the early stage of
penetration. The deflection in fact increases and its maximum occurs close to the contact point, in
spite of the fact that the local deadrise angle slightly decreases. The local deadrise angle between
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the free surface and the deformed body surface follows from the local slope tan b% ¼
tan bþ @wðr; tÞ=@r: During that phase it seems that the maximum deflection and the maximum
pressure are rather correlated.
At about a ¼ rA1 ; there is a stabilization of the maximum deflection, which means that the first

mode starts to dominate. Then the immersion accelerates as the local deadrise angle decreases. A
maximum is reached before complete immersion, while the local deadrise angle must come back to
b: The reason is that the cone is clamped along its outer boundary. The maximum velocity ’a is 2.5
times its initial value. For thinner shells it can be much higher.
After a ¼ rA1 ; the angle b

% varies significantly. In particular it reaches a negative value before
increasing rapidly up to its initial value at complete immersion. The limit b ¼ 4� is known to be
the lower limit of the linearized Wagner model. This suggests that other phenomena may appear
as ventilation. Beyond this point, the standard pressure calculation within potential theory is also
questionable. The pressure variation is plotted in Fig. 13. Two points of measurement ðP1;P2Þ are
identified r=RE0:31 and r=RE0:70 respectively on both sides of the limit aðtÞ=R > 0:55: One notes
that Pmax

2 is about twice Pmax
1 : On the other hand P2 is divided by a factor 4 within a time interval

of 3� 10�5 s: One can expect that this is too rapid to be caught by any existing sensors. As an
example, in experimental measurements, the pressure gauges have a finite dimension: their
diameter is about 5 mm long for those used by Donguy [17]. Knowing the speed of the contact
line ’aE100 m=s; this means that the duration of presence of the peak on the pressure gauge is
about DtE5� 10�5 s: Therefore the measurement of the peak value is quite uncertain as has also
been mentioned in Faltinsen [36] in his figure 4. For the same simulation, Fig. 13 also shows the
corresponding variations of the penetration, velocity and acceleration with aðtÞ: The velocity
undergoes a slight decrease and ends with a default of 4%. The acceleration reaches a maximum
value, about 165 times the gravity. To complete this analysis the different components of ’a
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(see Eq. (55)) are plotted in Fig. 14. It is observed that ’a increases as the sum of p tan b
4

þQ0ðaÞA
� �

vanishes. Asymptotically ’a can be very large under these circumstances. On the other hand, ’a can
hardly vanish. In fact, for the case illustrated above the initial velocity is ViniE8:28 m=s and it is
much larger than the maximum value of QðaÞ ’A:

3.3. Importance of the elasticity

The importance of the elasticity effects can be quantified with respect to the rigid case. For the
same parameters used in the previous sections, Fig. 15 shows the time variations of the velocity
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and acceleration up to complete immersion. The differences are noticeable not only on the
amplitude but also on the duration of the simulation. A comparison of the velocity at the time
instant where the cones (rigid or elastic) are completely immersed shows that

Vrigid � Velastic

Vrigid

����
����E5% ’Vrigid � ’Velastic

’Velastic

����
����E18% ð70Þ

Up to 80% of immersion of the elastic cone, its acceleration is much lower than the acceleration of
the rigid cone. However at complete immersion of the elastic cone the acceleration (and
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consequently the force) reaches a higher value than for the rigid cone. This is due to the clamping
condition along the edge of the cone. For the pressure measured at the two points r=RE0:31 and
r=RE0:70 along the generatrix of the cone, their variations with aðtÞ=R are plotted in Fig. 16. The
relative amplitudes of the pressure peaks at points 1 and 2 between the rigid and elastic are
inverted. The variations of the pressure after the peak also show a clear difference of amplitude;
there is a factor greater than 2. The difference of the peak amplitude is explained by comparing
the time variations of ’a (also plotted in Fig. 16) since the peak is proportional to ’a2:

3.4. Parametric study

It appears that the velocity at which the wet surface expands is strongly affected by the
elastic characteristics of the shell. This parameter has been chosen to discuss the parametric
influence of the shell thickness, drop height and deadrise angle, on the main features of
the phenomenon.

3.4.1. Influence of the shell thickness

The time variation of ’a with the thickness is quite noticeable. It is illustrated here for free drop
tests. With two drop heights hc ¼ 0:90 m; hc ¼ 3:50 m and deadrise angle b ¼ 6�; the thickness
varies in the range HA½1 mm : 15 mm�: The results are illustrated in Figs. 17 and 18, where two
series of ‘‘small’’ and ‘‘large’’ thicknesses are compared in terms of the time variation of ’a: It
appears that the interval HA½2 mm : 5 mm� is a transition between two behaviours: rigid-like and
elastic-like. For small thicknesses the duration of the immersion increases significantly and the
clamping condition at the outer edge strongly affects the kinematics of the drop before complete
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immersion. In the transition range, the monotony of ’a changes. Whatever the thickness, the
velocity of penetration V ðtÞ always decreases monotonically. Its final value at aðtÞ ¼ R (non-
dimensional with the initial velocity Vini) is plotted in Fig. 19 as the thickness varies. It is worth
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noting that the decline of the velocity increases with the thickness. This means that elasticity
makes the velocity more constant during penetration. The higher the initial velocity, the more
elastic the shell, the more constant the velocity of penetration.

3.4.2. Description of the cavity formation
Two stages of the cone deflection are shown in Fig. 20 up to the instant when an entrapped air

pocket is formed. In the present approach, the simulation is stopped unless a secondary contact
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point can be accounted for. This means that the local configuration close to the new contact point
must be identified. This is quite feasible within the linearized Wagner technique (see Ref. [13]) as
long as the main hypothesis of small deadrise angle is not violated. However, one can also expect
that the phenomena which occur in the air cavity are far from simple. For example, part of the
fluid evacuated in the jet is certainly entrapped in the cavity as well. Hence the usual hypothesis of
constant pressure in the cavity is questionable.
The formation of the cavity can be anticipated by examining the configuration where the free

surface deformation is such that the outer edge gets wet. This time instant follows from the
geometric identity

ZðR; tÞ þ hðtÞ ¼ R tan b: ð71Þ

It is reasonable to assume that the first mode dominates, hence the free surface elevation
calculated from Eq. (29) yields an expression of the first mode amplitude as a function of a and the
penetration depth h

A1ða; hÞ ¼
p
2E1

h 1
2

p
Y2ðR=aÞ

� �
� R tan b�

a tan b
2

Y3ðR=aÞ
	 


: ð72Þ

The limiting stress of the shell is about selasE350 MPA: The corresponding limiting amplitude A1
is given by

ðA1Þelas ¼
selas

Esmax
1

; ð73Þ

where smax
1 is the maximum value of the stress along a generatrix of the cone and E is the Young’s

modulus. From a parametric study which is not detailed here, it appears that there is a non-
negligible area ða; hÞ where the cavity might be formed.
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3.4.3. Influence of the deadrise angle

The deadrise angle is allowed to vary between b ¼ 6� up to b ¼ 20� with the increasing step 1�:
The higher value is known to be the upper allowed limit of the Wagner theory. Considering the
thickness H ¼ 1:5 mm; Fig. 21 illustrates the time variation of ’a for the studied angles b: For
lower thicknesses and low values of b unphysical results are obtained. The velocity ’a may reach
the threshold defined by the sound velocity in water. Acoustic effects may occur and the present
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approach fails. Progressively, for larger deadrise angles the monotony of ’a becomes very smooth.
Fig. 21 shows the deflection measured at the r=RE0:31: It is not the maximum deflection of the
shell and hence it can be expected that much larger deflections can be obtained for a shell which is
flatter and thinner. It should be noted that for the present computations, there is a critical angle
beyond which a cavity is formed; it is b ¼ 12�:

3.4.4. Influence of the drop height
An increasing drop height hc implies not only faster immersion but also amplification

of the elastic effects. The influence of hc is more or less identical to what has been
already observed. Fig. 22 illustrates the time variations of ’a for drop heights ranging
from hc ¼ 90 cm up to hc ¼ 350 cm: The deadrise angle is b ¼ 6�: A low thickness
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ðH ¼ 0:5 mmÞ leads to the formation of a cavity with unphysical deflection amplitudes. For
greater thicknesses (the curves correspond to thickness H ¼ 1:5 mm), the effects of elasticity
are still non-negligible. Finally for a ‘‘high’’ thickness H ¼ 5 mm; the variations of the deflections
show that a maximum is reached before complete immersion and it is expected that free vibrations
may start.

3.4.5. Energy conservation

The energy conservation law is formally proved in the theoretical developments in Section 2.4
and it is checked numerically. The numerical accuracy mainly depends on the total number of
modes of the modal decomposition. To a lesser extent, it also depends on the numerical
integration of system (56). First the time variation of different components is examined in Fig. 23:
the velocity of expansion ’a; the velocity of penetration V ðtÞ and the quantity QðaÞ ’A which
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quantifies the elasticity effects. The following non-dimensionalization formulas are used:

dnodim ¼
32d
RT2

; ’anodim ¼
’a

’aini

; Vnodim ¼
V ðtÞ
Vini

; ½QðaÞ ’A�nodim ¼
QðaÞ ’A

Vini

; ð74Þ
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and the ratio of the ‘‘elastic’’ jet thickness to the ‘‘rigid’’ jet thickness4 is

delastic

drigid

¼
V �QðaÞ ’A

V

� �2
; drigid ¼

a

2p ’a2
V2: ð75Þ

The quantity QðaÞ ’A is always positive. To a certain extent, it can be interpreted as a measure of
the elasticity effects. This term appears in the jet thickness d and in the Jacobian dt=da: It peaks
with the minimum of ’a and the maximum of d: For the present calculation the maximum jet
thickness is dmaxE72 mm and the corresponding velocity of the fluid in the jet is Vf ¼
2 ’aE100 m=s: The time variation of these quantities can be correlated to the time variations of
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energies. The different components of the energies are plotted in Fig. 24. Among the different
components, the variation of the kinetic energy of only the elastic shell is non-monotonic. This
component peaks when the thickness of the jet is maximum in spite of the fact that the velocity of
the fluid in the jet reaches precisely its minimum there. The kinetic energy evacuated in the jet and
the energy transmitted to the bulk of the fluid have comparable magnitudes. This is consistent
with the rigid case and the fact that the velocity of penetration is almost constant. At mid-
immersion, the first mode dominates and the corresponding deflection increases monotonically.
As a consequence the potential energy of the shell also increases and becomes higher than the
other components. In order to quantify the importance of the first mode relatively to higher
modes, Fig. 25 shows the total potential energies of the shell and its restriction to the first mode. It
may be seen that most energy (70% of the total potential energy) originates from the first mode.
This quantifies the error which occurs by using the first mode approximation.
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3.4.6. Pressure distribution

Comparisons with experimental data are done for the pressure distribution. The experimental
set-up is described in Donguy [17]. Two points of measurements are identified along a generatrix
of the cone at r=RE0:3 and r=R ¼ 0:7 from the apex.
In Fig. 26, the time variations of the pressure are plotted for a deadrise angle b ¼ 14� and a

thicknessH ¼ 1:5 mm: The velocity at the initial contact point is Vini ¼ 2:5 m=s: The comparisons
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are adjusted so that the pressure maxima appear at the same instant. This is justified at least for
the first wet pressure gauge, since a common origin in time is necessary. For the second pressure
gauge this is questionable but the time interval for adjustment is indicated in the figure just below
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the second pressure peak. Different reasons can be invoked for this discrepancy (even small). One
is the non-colinearity of the drop axis and the symmetry axis of the cone.
Another discrepancy concerns the ramp for which the pressure reaches its maximum. The

surface of the pressure gauge in contact with water is circular with diameter 5 mm: Knowing also
’a the velocity of expansion of the wet surface—this is also the velocity at which the pressure peak

ARTICLE IN PRESS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

P
re

ss
ur

e 
(b

ar
)

time (ms)

+0.8 ms

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

P
re

ss
ur

e 
(b

ar
)

time (ms)

Fig. 26. Comparison between experimental and numerical time variations of the pressure calculated or measured at the

points r=RE0:3 (top) and r=R ¼ 0:7 (bottom). Pressure exactly at the point of measurements: thick solid line, pressure
averaged over the surface of the pressure gauge: thin dashed line, experimental results: thin solid line. The arrow shows

the duration of the ramp in the numerical simulation. The figure þ0:8 ms below the second peak pressure (lower figure)
is the time interval for adjustment to approximately superpose the ramp. Parameters: deadrise angle b ¼ 14�; thickness
H ¼ 1:5 mm: initial velocity Vini ¼ 2:5 m=s:

Y.-M. Scolan / Journal of Sound and Vibration 277 (2004) 163–203 197



moves—provides a ramp duration ranging from 0.2 to 0:45 ms depending on the parameters. A
small arrow is hence drawn above each pressure peak. A better comparison of the pressure is thus
shown by averaging the pressure distribution over the gauge surface. This allows the ramp to be
reproduced but it may also lead to a substantial reduction of the pressure peak.
The experimental results reveal several phenomena that are not reproduced by the model. For

example the pressure may decrease before the peak passes through the pressure gauge. This was
also observed for rigid body and other experimental campaigns (see Ref. [38]). Ventilation effects
might occur there.

4. Conclusions

The present coupled hydroelastic approach shows that the elasticity strongly affects the
behaviour of an elastic shell, compared to the rigid case. The structural problem is posed in terms
of a modal formulation of the deflection through a linear model for thin shells. The hydrodynamic
problem is posed within the frame of the linearized Wagner theory and provides the
hydrodynamic pressure distribution acting on the shell.
The critical parameter is the velocity at which the wet surface expands. The phenomena have

been described in terms of the drop height, the deadrise angle and the thickness of the shell. The
studied configuration is a cone which is clamped along its outer boundary. Another case has been
studied but not detailed here, which is a cone with a free outer edge. This case, which will be
described in future works, gives more insight into the formation of the air pocket.
It appears that for the studied configuration, the deadrise angle mainly influences the elastic

behaviour. The analysis of the penetration into the liquid shows that two different stages can be
distinguished: before and after the instant when the first mode dominates.
The present model cannot be used after complete immersion is reached since the separation of

the flow at the knuckle (along the outer edge of the cone) is not modelled. But the analysis of the
differential system should exhibit the state of the dynamic system when the free vibration phase is
supposed to start. In particular a new set of eigenfrequencies (lower than the ‘‘dry’’
eigenfrequencies) can be determined. This is a line of research for future work.
Experimental data for stress or deformation are not yet available. However it is strongly

recommended to undertake comparisons with these quantities in order to define more precisely
the domain of application for this approach.
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Appendix A

Some detailed analytical calculations (when possible) are presented in these appendices.
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A.1. Calculation of the vector QðaÞ

The following integrals are useful to calculate the variables QmðaÞ:Z p=2

0

sin yJ0ðK sin yÞ dy ¼
sinK

K
; and

Z p=2

0

sin yI0ðK sin yÞ dy ¼
sinhK

K
; ðA:1Þ

Z p=2

0

sin yY0ðK sin yÞ dy ¼
2

pK
½CiðKÞ sinK � SiðKÞ cosK �; ðA:2Þ

where Si and Ci are Sine and Cosine integrals (see formulæ AS 5.2.1 and AS 5.2.2). The following
series can also be used:Z p=2

0

sin y Y0ðK sin yÞ þ
2

p
K0ðK sin yÞ

	 

dy ¼

4

p

XN
p¼0

K4pþ2

Gð4p þ 4Þ
½Cð4p þ 4Þ � logK �; ðA:3Þ

where G is the Error function and C denotes G0=G: This series is not very stable as soon as K > 8:
It is hence preferable to compute the series numerically at least for the integral for K0: For most
integrals a Simpson algorithm with 100 points is used. The variable QmðaÞ is plotted in Fig. 27 for
the first eight modes as a function of a:

A.2. Calculation of the vector gðaÞ

The coefficients gmðaÞ follow from Eq. (51) and they are expressed in terms of two contributions

gmðaÞ ¼ �
2Va3

p
½QmðaÞ � Qð3Þ

m ðaÞ�; ðA:4Þ
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Fig. 27. Variation of QmðaÞ (Eq. (24)) for the first eight modes as a function of a=R: Left: Mode No. 1: (thick solid line),
No. 2: (thick dashed line), No. 3: (thin solid line), No. 4: (thin dashed line). Right: Mode No. 5: (thick solid line), No. 6:

(thick dashed line), No. 7: (thin solid line), No. 8: (thin dashed line).
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where Qð3Þ
m ðaÞ is another tabulated function which is partly calculated from formulæ

Z p=2

0

sin3 yJ0ðK sin yÞ dy ¼
ðK cosK � sinK þ K2 sinKÞ

K3
; ðA:5Þ

Z p=2

0

sin3yI0ðK sin yÞ dy ¼
ðsinhK � K coshK þ K2 sinhKÞ

K3
: ðA:6Þ

Concerning the integrals which contain Y0 and K0;

Z p=2

0

sin3 y Y0ðK sin yÞ þ
2

p
K0ðK sin yÞ

	 

dy ðA:7Þ

a numerical integration is performed. Fig. 28 shows the variations of gmðaÞ for the first eight
modes.

A.3. Calculation of the matrix WðaÞ

The coefficients of the matrixWðaÞ are expressed in Eq. (51). Fig. 29 shows their variations with
aðtÞ=R: The first four diagonal terms are compared to each other and the first four terms of the
first line of the matrix as well. It is shown that the first mode is clearly dominant compared to
others. This suggests that the approximation where only the first mode is used can be acceptable at
least after mid-immersion. This approximation is also discussed in Ref. [37] for the two-
dimensional case.
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Fig. 28. Variation of gmðaÞ (Eq. (A.4)) for the first eight modes as a function of a=R: Left: Mode No. 1: (thick solid
line), No. 2: (thick dashed line), No. 3: (thin solid line), No. 4: (thin dashed line). Right: Mode No. 5: (thick solid line),
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A.4. Modal component of the potentials

Finally, concerning the modal component of the displacement potential, in order to be
calculated numerically, it is advantageously turned into

Fmðr; aÞ ¼
2r

p

Z argchða=rÞ

0

cosh xQmðr cosh xÞ dx: ðA:8Þ
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Its time derivative is calculated directly from equation

’Fnðr; aÞ ¼
2a ’aQnðaÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p : ðA:9Þ

This is useful to extract the singular part of the pressure distribution.

A.5. Modal component of the force

The variables RnðaÞ follow from Eq. (41). They are calculated numerically when the integrand
contains the Bessel functions ðY0;K0Þ: But the following analytical formulæ are used for Bessel
functions J0 and I0: Z a

0

y
sinKy

K
dy ¼

ðsinKa � Ka cosKaÞ
K3

; ðA:10Þ

and Z a

0

y
sinhKy

K
dy ¼

ðKa coshKa � sinhKaÞ
K3

: ðA:11Þ
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